The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers.
نویسندگان
چکیده
The giant sarcomeric protein titin (also described as connectin) is composed mainly of immunoglobulin (Ig)-like and fibronectin type III (fn3)-like domains arranged consecutively. At both ends of the molecule, these domains are interrupted by sequence insertions. The amino terminus of titin is localized in the Z-disk, a structure of great variability in different muscle types. We have determined the ultrastructural position of sequences in this region of the molecule in skeletal and cardiac muscle by immunoelectron microscopy using antibodies directed against unique epitopes. Titin molecules entering the Z-disk from two half sarcomeres do not significantly overlap, showing that the amino terminus is at the centre of the Z-disk. A serine/proline rich site, which can be phosphorylated by kinases in developing muscle tissues, was identified near the amino terminus of titin. Sequence analysis revealed the presence of a novel 45 residue repeat ('Z-repeats') in this region of the molecule. The number of titin Z-repeats varies due to differential splicing. We propose that this mechanism is a means of assembling Z-disks of variable thickness and mechanical strength.
منابع مشابه
Comparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species
Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...
متن کاملMechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures.
Cardiac muscle is equipped with intricate intrinsic mechanisms to regulate adaptive remodeling. Recent and extensive experimental findings powered by novel strategies for screening protein-protein interactions, improved imaging technologies, and versatile transgenic mouse methodologies reveal that Z disks and titin filaments possess unexpectedly complicated sensory and modulatory mechanisms for...
متن کاملInvited Review Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures
Hoshijima, Masahiko. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am J Physiol Heart Circ Physiol 290: H1313–H1325, 2006; doi:10.1152/ajpheart.00816.2005.—Cardiac muscle is equipped with intricate intrinsic mechanisms to regulate adaptive remodeling. Recent and extensive experimental findings powered by novel strategies for screeni...
متن کاملTargeted homozygous deletion of M-band titin in cardiomyocytes prevents sarcomere formation.
Titin, a multifunctional protein that stretches from the Z-disk to the M-band in heart and skeletal muscle, contains a kinase domain, phosphorylation sites and multiple binding sites for structural and signalling proteins in the M-band. To determine whether this region is crucial for normal sarcomere development, we created mouse embryonic stem cell (ES) lines in which either one or both allele...
متن کاملMolecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin.
The sarcomeric Z-disk, the anchoring plane of thin (actin) filaments, links titin (also called connectin) and actin filaments from opposing sarcomere halves in a lattice connected by alpha-actinin. We demonstrate by protein interaction analysis that two types of titin interactions are involved in the assembly of alpha-actinin into the Z-disk. Titin interacts via a single binding site with the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 109 ( Pt 11) شماره
صفحات -
تاریخ انتشار 1996